Index of /~boomerang/data/Nature00/b98

Name                   Last modified     Size  Description

CONTENT 23-Oct-00 21:45 1k Cl 23-Oct-00 21:45 1k WS_FTP.LOG 23-Oct-00 21:45 2k beam 23-Oct-00 21:45 15k bin 23-Oct-00 21:45 1k d2LdC2 23-Oct-00 21:45 2k xb 23-Oct-00 21:45 1k

This archive contain release of Boomerang LDB power spectrum data, 
published in P. deBernardis et al., Nature, 404, p.955, (2000).
---------------------------------------------------

See the file "CONTENTS" for a description of the files in this 
archive.  This README file contains a summary of the data.
---------------------------------------------------

Web References:

http://oberon.roma1.infn.it/boomerang/
http://www.physics.ucsb.edu/~boomerang
---------------------------------------------------

Brief summary of the data for band powers:

------------ Power in multipole bands and the error bars ----------

Column 0: Just a counter. 
Column 1: l_min. Minimum multipole included in the bin
Column 2: l_max. Maximum multipole included in the bin. 
Column 3: l_bar. Center multipole for the bin. 
Column 4: (dT_bin)^2. The power in this bin, l(l+1)C_l/2pi, 
	  in units of (micro-K)^2
Column 5: sigma_bin. The uncertainty in column 4, in units of (micro-K)^2
Column 6: 'xb' Parameter. See, for example, Bond, Jaffe and Knox 1998, 
	  astro-ph/9808264

(0) (1)  (2)   (3)      (4)      (5)       (6)
  1  26   75  50.00  1140.55  259.174    3.90026
  2  76  125 100.00  3110.66  491.820    8.35781
  3 126  175 150.00  4155.12  547.354   18.7338 
  4 176  225 200.00  4703.71  538.811   35.6949
  5 226  275 250.00  4304.85  462.634   71.2736
  6 276  325 300.00  2641.50  309.740   127.931
  7 326  375 350.00  1554.30  221.784   248.283
  8 376  425 400.00  1310.24  219.366   392.760
  9 426  475 450.00  1356.59  250.142   606.110
 10 476  525 500.00  1442.61  293.052   874.743
 11 526  575 550.00  1750.30  369.735  1230.15
 12 576  625 600.00  1535.63  420.665  1690.98


----------------- Inverse Likelihood curvature matrix -------------


Following is the correlation matrix for the points above. The units 
are ((micro-K)^2)^2 (yes, squared twice).  Note that the square-root 
of the diagonals should be the error-bars listed in the table above column (5). 

 7.79e+04 -1.17e+04  1.21e+02 -2.92e+02 -1.11e+02 -4.57e+01 -2.22e+01 -1.66e+01 -1.52e+01 -1.53e+01 -1.52e+01 -1.62e+01
-1.17e+04  2.36e+05 -2.29e+04  9.92e+01 -4.83e+02 -1.50e+02 -6.89e+01 -4.73e+01 -4.12e+01 -3.95e+01 -4.27e+01 -4.01e+01
 1.21e+02 -2.29e+04  2.94e+05 -2.56e+04  7.09e+01 -3.59e+02 -1.26e+02 -7.84e+01 -6.42e+01 -5.84e+01 -6.00e+01 -6.02e+01
-2.92e+02  9.92e+01 -2.56e+04  2.94e+05 -2.17e+04  2.42e+01 -2.57e+02 -1.29e+02 -9.24e+01 -8.06e+01 -7.78e+01 -7.54e+01
-1.11e+02 -4.83e+02  7.09e+01 -2.17e+04  2.15e+05 -1.24e+04  1.68e+00 -2.19e+02 -1.35e+02 -9.77e+01 -9.39e+01 -8.43e+01
-4.57e+01 -1.50e+02 -3.59e+02  2.42e+01 -1.24e+04  9.39e+04 -6.05e+03 -2.82e+01 -1.70e+02 -1.19e+02 -8.72e+01 -8.22e+01
-2.22e+01 -6.89e+01 -1.26e+02 -2.57e+02  1.68e+00 -6.05e+03  4.89e+04 -4.30e+03 -5.75e+01 -1.38e+02 -1.04e+02 -6.64e+01
-1.66e+01 -4.73e+01 -7.84e+01 -1.29e+02 -2.19e+02 -2.82e+01 -4.30e+03  4.71e+04 -4.74e+03 -6.46e+01 -1.37e+02 -9.98e+01
-1.52e+01 -4.12e+01 -6.42e+01 -9.24e+01 -1.35e+02 -1.70e+02 -5.75e+01 -4.74e+03  6.08e+04 -6.30e+03 -7.28e+01 -1.51e+02
-1.53e+01 -3.95e+01 -5.84e+01 -8.06e+01 -9.77e+01 -1.19e+02 -1.38e+02 -6.46e+01 -6.30e+03  8.51e+04 -9.20e+03 -1.00e+02
-1.52e+01 -4.27e+01 -6.00e+01 -7.78e+01 -9.39e+01 -8.72e+01 -1.04e+02 -1.37e+02 -7.28e+01 -9.20e+03  1.33e+05 -1.37e+04
-1.62e+01 -4.01e+01 -6.02e+01 -7.54e+01 -8.43e+01 -8.22e+01 -6.64e+01 -9.98e+01 -1.51e+02 -1.00e+02 -1.37e+04  1.84e+05

--------------- Calibration ----------------------------------------

The calibration uncertainty is 10% (in temperature units), 
dominated by systematic uncertainty.  (See deBernardis, et al. 2000). 

--------------- Beam -----------------------------------------------

Exact l-dependence of the beam is given in the file 'beam' of the archive,
which includes effects of pixelization.
The pixelization used is HEALPix (www.eso.org/~kgorski/healpix), 
with a parameter Nside = 256 (=13.7 arcmin pixel size)

The beam is roughly a Gaussian with FWHM \theta_s=10 arcmin.  
We estimate beam FWHM uncertainty to be +-1 arcmin (1-sigma gaussian
error);  see (deBernardis etal 2000) for details.
The following way to account for beam uncertainty has been used 
in Lange et al (astro-ph/0005004) and is sufficiently accurate: 

The bandpower is I(C_L W_L)/I(W_L), where the "logarithmic integral" 
I(f_L) = sum_L f_L (L+1/2)/(L(L+1)) for any function f_L, and W_L is 
the beam function.  Uncertainty in the beam leads to uncertainty in 
bandpowers as I(C_L W_L exp(-(L+0.5)^2 [\delta(\theta_s^2)] )/I(W_L),
where \delta(theta_s^2) is the Gaussian beam uncertainty squared. 

\delta(\theta_s^2) = 2 \theta_s ( \delta \theta_s ) 

We assume that \delta \theta_s is gaussian distributed with standard 
deviation 1 arcmin.  Note, that approximate FWHM theta_s=10 arcmin 
value is used only to compute beam uncertainty. The main term W_L is 
given by the accurate shape in the file 'beam'


------------------------------------------------------------------
Last Modified Sept 30, 2000